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Heat Transfer Effects in Facilitated Transport Liquid
Membranes

N. J.KEMP AND R. D. NOBLE

NATIONAL BUREAU OF STANDARDS
CENTER FOR CHEMICAL ENGINEERING 773.1
BOULDER, COLORADO 80303

ABSTRACT

facilitated transport. bwo Liniving regines whaco
steady-state analytical solutions are available; diffusion-limited
(reaction equilibrium) and reaction-limited (frozem condition).

For intermediate cases, numerical solutions are available. All of
these models are valid for isothermal conditioms. It is possible
in practice that the system may not be isothermal. The gas streams
on each side of the membrane may be at different temperatures and/
or there can be heat of reaction effects. These effects can cause
the total facilitated flux to deviate from the isothermal case.

The results of including temperature effects are incorporated
in a dimensionless factor ©. © is the facilitation factor for the
non-isothermal case divided by the facilitation factor for the iso-
thermal case. Results show that the imposition of a temperature
gradient can cause a significant increase or decrease in the facil-
itated flux. In extreme cases, there can even be a reversal in the
direction of the facilitated flux. The heat of reaction had no
noticeable effect for the conditions studied.

INTRODUCTION
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under isothermal, one-dimensional conditions is described elsewhere
(2, 10, 11).

The mass transfer in facilitated transport can be affected if
a temperature gradient is imposed across the liquid film. This
non-isothermal condition is quite likely to occur in practice since
it is difficult to precisely control the temperature on both sides
of the film due to process conditions. Previous researchers have
studied various aspects of the above problem. Most have been con-
cerned with combined heat and mass transfer with a reversible re-
action taking place, either in the medium being studied or at a
boundary. The primary focus has been on the enhancement of heat
transfer. Fay and Riddell (12) studied the case of heat transfer
from dissociating air with a finite reaction rate. They used nu-
merical methods to integrate the laminar boundary layer equations.
Broadwell (13) studied this same problem using a linearized reac-
tion rate expression. Hirschfelder (14) considered the more gen-
eral problem of combined heat and mass transfer near reaction equi-
librium. He developed an effective thermal conductivity to incor-
porate these combined effects. Brian and Reid (15), Brian and Bod-
man (16), and Goddard, Schultz, and Suchdeo (17) gave theoretical
solutions for enhanced heat transfer due to chemical reaction.
Goddard et al. specifically demonstrated that the analysis of
facilitated mass transport could be applied to enhanced heat
transport.

The objective of this study is to demonstrate the effect of

heat transfer on the mass transport rate. It will be shown that
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heat transfer can either enhance or impede the facilitated mass

transport.

Problem Formulation

The most common reaction mechanism studied for facilitated

transport is (7, 10, 11)

ky
N
1A + B . AB (1)
ke
where A = permeate
B = carrier

AB = permeate-carrier complex

The differential mass balances which describe this reaction

mechanism at steady-state are

da%c,
0= DA ;;;— - k‘CAcB + kchB (2)
d%c
0= DB p - k1CACB + kchB (3
X
d2c
-_— AB -
0 =D,p " + kiC,yCp - koCyp (4)
X
where
D, = diffusion coefficient of component i

(g}
1]

concentration of component i in the liquid film.
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-E
k; = kyoe /KT (5)

~E
k2 = kzoe r/RT (6)

The above equations assume one-dimensional transport across a

planar membrane.

A steady-state energy balance can also be written across the

membrane.
d2c
_ d?T AB
0= -k gz + (8Hr) Dyp —52 )
where:

k = thermal conductivity of liquid film

AHr = heat of reaction

The boundary conditions are

ac. dc
_ _ B_ 9Cap _ _
éx =0 €A = Cao & - ax - ° T=T,
ac.  dC
_ _ B _ g _ _
€x = L C, =0 2= T=T,

This second boundary condition corresponds to the limiting condi-
tion of maximizing the concentration gradient across the liquid

film. Here L is the membrane thickness.

The following assumptions are made:

1. DB = DAB'

(B) and the complex (AB) are approximately equal in size.

This equality is based on assuming that the carrier
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The thermal conductivity and diffusion coefficients are
considered to be constant over the temperature range shown in
Table 1. This is obviously an approximation but the tempera-
ture effect on the kinetic rate constants is much larger than
the effect on either the thermal conductivity or the diffusion

coefficients.

Ionic effects are neglected.

Heat of reaction (AHr) is negligible. This term was origi-
nally used in the simulations and found to be negligible for
the conditions studied.

A mass balance on the carrier yields

C.=C.+¢C (8)

where CT is the initial carrier concentration in the liquid film.

The following dimensionless variables are introduced (11, 18)

T -T,
"o, @
X =% (10)
c
C* = C_A (11)
Ao
c
= EE (12)
T
c
% = _AB
Cap™ = & 13)
E(T, - T
Ef = £L o) (14)
RT 2
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where

Equations (19)

expansion for the exponential term in equations (6) and (7) and

ky

E (T

r 'L

- To)

RT 2

-

k1o

LIT)

= kyo'e

= kzo’e

= kloe

= kzoe

and (20) were obtained by using the Laurent

*
E T+
*
E T
r
E¢/RT

o

E
r/RTo

retaining only the zero and first order terms.

RT* (TL - To) << To.

studied here.

The dimensionless equations and boundary conditions become

2¢ %
d CA

oK

e

KEMP AND NOBLE

(15)

(16)

a7

(18)

(19)

(20)

(21)

(22)

This is valid if

This condition is valid for the cases

E *T*

* - * -
Cp¥ (1-Cpp*)

K

e

(Er*-Ef*)T*

c

AB

A
~

(23)
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azc, ok E*T* . (E *-E*)T#
0=-—f3z— - ¢ ¢ CA* (1-C4p*) - %e Cap”® (24)
0= 3;7” (25)
@ = 0 Gk = 1 di%’i=o T™* = 0
ex = 1 Ck = 0 dZQB*=o T* = 1

The facilitation factor (F) is defined as the total facil-
itated flux divided by the simple diffusion flux of the permeate.

For this system, F becomes

(26)

The problem formulation was cast in dimensionless form for two
reasons. Dimensionless variables allow one to generalize the
solution so it is useful for a range of specific variables. Also,
the proper choice of dimensionless variables allows one to give
physical interpretations to these variables and the values of these

dimensionless variables help to describe the physical situation.

Results

Equations (23), (24), and (25) were solved numerically using a
computer package DO2GAF (NAG library) to evaluate F. To determine
the effect of the temperature gradient on the facilitation factor,

© is defined as
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F(non-isothermal case) (27)

b = F (isothermal case)

A value of © greater than 1 would correspond to an additional en-
hancement of the facilitated flux, while a value of © less than 1
weuld reflect a reduction in the facilitated flux. 6 equals 1 cor-
responds to no effect of temperature on the facilitated flux. The

dimensionless variables K, ¢, a, E_*, and Er* were varied to obtain

f
6 for these different physical and operating conditions. The range
in physical properties and operating conditions used in this study
are shown in Table 1. Results are shown in figures la to lh which
demonstrate the effect of each dimensionless variable on © .

The carrier concentration is directly proportional to a. As o
increases, the effect on 6, whether positive or negative, is also
increased. This is due to the fact that the reaction rate and,

therefore, the facilitation is affected by carrier concentration.

Ef* and Er* are a measure of the change in the kinetic rate

constant with temperature. The sign of E_* and Er* is determined

f

by the direction of the temperature increase. A positive sign

indicates TL > T0 and a negative sign indicates TL < To' Note that

Ef* and ErW must both be positive or both negative. For Ef* and

Er* positive, © > 1 if Ef* < Er* and © < 1 if E_* > Er*. This is

f
consistent from a physical standpoint. If Ef* < Er*, the forward
reaction rate constant will increase at a slower rate than the
reverse reaction rate constant. So, at X = 0, the forward reaction
otcurs and the reverse reaction is faster relative to the forward

reaction at X = 1 than it would be in the isothermal case since the

temperature is higher. More permeate is released and the facili-
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Table 1

Values of various parameters used in model simulation
k1o = 7.15 x 103 cm3/mol-s

kop = 9.00 X 1073 s71

D,y = 2.0 X 1076 cm?/s

D, =1.5x 1075 em?/s

50pm < L < 10 2m

0.1 < Cp/C, < 500

1x 1078 20 < ¢ <5 x 1075 2

295K < T_ < 325K

K < IT -7 | < 30K
2 L ol

J J

P 4

1 %10 mol < Ef <7 x10 mol

1x104L<E <7x104i
mol — "r — mol

tation is increased. The same reasoning explains the decrease in
6 if Ef* > Er*. For Ef* and Er* negative, the above conclusions
are reversed since the temperature gradient is in the opposite
direction. When Ef* and Er* are equal and small, © equals 1.
This corresponds to no temperature effect on facilitation.

€ is an inverse Damkohler number and relates diffusion to

reaction times. A small value of & corresponds to rapid reaction
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24

0
0.001

FIGURE la.

FIGURE 1Ib.

0.01

0.1 10 10 €

8 vs € for K =5, a = 10, with A) £f = 10, Ef = 10; B) &} = 1,
E¥ = 10; C) Ef = 0.00L, 0.0l, 0.1, Ef = 10; D) Ef = 0.001, 0.01,
0.1, Ef = 1; E) Ef = 1, Ef = 1; F) Ef = 0.001, 0.0i, 0.1,

Ef = 1; G) Ef = 1, Ef = 1; H) Ef = 1, Ef = 0.001, 0.01;

1) Ef = 10, Ef = 1; J) Ef = 10, E} = 0.001, 0.01, O.1.

9 ve € for K = 5, a = 10, with A) Ef = -10, Ef = -0.001, -0.01,

-0.

D)
Er

*
EI‘

1; B) Ef = -10, Ef = -1; ¢) Ef = -1, E¥ = -0.001, -0.01;

Ef = -1, Ef = -0.1; E) Ef = -0.001, -0.01, -0.1; F) Ef = -1,
= -1; G) Ef = -0.001, -0.01, -0.1, Ef = -1; H) Ef = -10,

= -10; 1) Ef = -0.001, -0,01, -0.1, -1, Ef = -10.
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4.8 T
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0.001 001 0.1 1 10 0.001 0.01 0.1 1 10
FIGURE lc. O vs € for K = 5, a = 100, with A) Ef = 10, E¥ = 10; B) Ef = 1,

FIGURE 1d.

E¥ = 10; ¢) Ef = 0.001, 0.01, 0.1, Ef = 10; D) Ef = 0.001, 0.01,

0.1, E¥ = 1; E) Ef = 1, Ef = 1; F) Ef = 0.001, 0,01, 0.1,

E¥ = 0.1; G) Ef = 0.1, Ef = 0.001, 0.01; H) Ef = 1, Ef = 0.1;
I) Ef = 1, Ef = 0.01, 0.00L; J) Ef = 10, Ef = 1; K) Ef = 10,
Ef = 0.001, 0.01, O.1.

8 vs ¢ for K = 5, a = 100, with A) Ef = -10, Ef = -0.001, -0.01,
-0.1; B) Ef = -10, EF = -1; C) Ef = -1, Ef = -0.001, -0.01;

D) Ef = -1, E}f = -0.1; E) Ef = -0.001, -0.01, -0.1, E} = 0.1;

F) Ef = -1, E}f = -1; ¢) E}f = -0.001, -0.01, -0.1, Ef = -1;

H) Ef = -10, Ef = -10; I) Ef = -0.001, -0.01, 0.1, -1,

Ep = -10.
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FIGLRE le.

FIGURE 1f,

: 0
0.01 01 1 10 0.001 0.01 0.1 1

% vs & for K= 10, 1 = 10, with A) Ef = 10, EFf = 10; B) Ef = I,

E¥ = 10; €) Ef = 0.001, 0.01, 0.1, Ef = 10; D) Ef = 0.001,
0.01, 0.1, EX = 1; E) Ef = 1, Ef = 1; F) Ef = 0.001, 0.01, O.1,
EF = 0.1; G) Ef = 1, E}f = 0.1; H) Ef = 1, Ef = 0.001, 0.01;

1) Ef = 10, EX = 1; J) Ef = 10, E} = 0,001, 0.01, O.1.

8 vs ¢ for K = 10, a = 10, with A) Ef = -10, Ef = -0.001, -0.01,

-0.1; B) E} = ~10, E} = -1; C) Ef = -1, Ef = -0.001, -0.01,
-0.1; D) Ef = -1, E} = -0.1; E) Ef = -0.001, -0.01, -0.1,
E¥ = -0.1; F) Ef = -1, Ef = -1; G) Ef = -0.001, -0.01, -O.1,

E¥ = —1; W) Ef = -10, E} = -10; D) £} = -0.001, -0.01, -0.1,
-1, Ef = -10.
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moL—

FIGURE lg.

FIGURE lh.

0
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1

8 vs € K= 10, a = 100, with A) Ef = 10, Ef = 10; B) Ef = 1,

EX = 10; €) Ef = 0.001, 0.01, 0.1, Ef = 10; D) Ef = 0.001,
0.01, 0.1, E¥ = 1; E) Ef = 1, Ef = 1; F) Ef = 0.001, 0.01, 0.1,
E* = 0.1; G) Ef = 0.1, Ef = 0.001, 0.01; H) Ef = 1, Ef = 0.1;
1) £f =1, €% = 0.001, 0.01; J) Ef = 10, €F = 1; K) Ef = 10,

E¥ = 0.001, 0.1, 0.1.

8 vs € for K = 10, a = 100, with A) Ef = -10, £} = -0.001,
-0.01, -0.1; B) Ef = -10, Ef = -1; C) Ef = -1, E} = -0.001,
-0.01, -0.1; D) Ef = -1, Ef = -0.1; E) £f = -0.1, Ef = -0.001,
-0.01; F) Ef = -0.001, -0.01, -0.1, E}f = -0.1; G) £f = -1,

Ef = -1; #€) Ef = -0.001, -0.01, -0.1, Ef = -1; 1) Ef = -10,

EX = -10; J) Ef = -0.001, -0.01, -0.1, Ef = -10,
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€ €

FIGURE 2a. 8 vs € for C4% yo) = 0.1, K = 5, a = 10, with &) Ef = 10,

E¥ = 10; B) Ef = 1, Ef = 10; C) Ef = 0,001, 0.01, 0.1,

EF = 10; D) Ef = 0.001, 0.01, O.1, Ef = 1; E) Ef = 1, Ef = 1;
F) Ef = 0.001, 0.0l, 0.1, E} = 0.1; G) Ef = 0.1, E}f = 0.001,
0.01; H) Ef = 1, Ef = 0.001, 0,01, O.1; I) Ef = 10, Ef = 0.001,

r
0.01, o0.1, 1.

FIGURE 2b. © vs € for Cp¥ y=1 = 0.1, K = 5, a = 10, with A) Ef = -0,
E} = -0.001, -0.01, -0.1; B) Ef = -10, Ef = -1; C) Ef = -1,
E¥ = -0.001, -0.01, -0.1; D) Ef = 0.1, Ef = -0.001, -0.01;
E) Ef = -1, EX = -1; F) Ef = -0.001, -0.01, -0.1, E¥ = -i;
G) Ef = -10, Ef = -10; H) Ef = -0.001, -0.01, -0.1, -1,

EF = -10.



13:31 25 January 2011

Downl oaded At:

HEAT TRANSFER IN FACILITATED TRANSPORT

4.0

3.2

24

1161

3.2 A

241

08

0.8

FIGURE 2c.

FIGURE 2d.

!
0.001 0.01 0.1 1

8 vs = for Cp" o] = 0.1, K = 5, a = 100, with A) Ef =1,

Ef = 10; B) Ef = 0.001, 0.01, 0.1, E* = 10; ) Ef = 10, E¥ = 10;

r

D) Ef = 0.001, 0.01, 0.1, EX = 1; E) £} = 1, Ef = 1; F) Ef =

0.001, 0.01, 0.1, Ef = 0.1; G) E} = 0.1, E¥ = 0.001, 0.01;
H) Ef = 1, Ef = 0.1; 1) & = 1, Ef = 0.01; J) E} = 10,

Ex = 0.001, 0.01, 0.1; K) Ef = 10, EX = 1.

8 ve e for Ca¥ yap = 0.1, K = 5, a = 100, with A) Ef = -10,
Er = -0.001, -0.01, -0.1; B) E}f = -10, E* = -1; ©) Ef = -1,
Ef = -0.001, -0.01; D) E} = -1, E% = —0.1; E) Ef = -0.1,

Ef = -0.001, -0.01; F) E} = -0.001, -0.01, -0.1, E} = -0.1;
6) Ef = -1, Ef = -1; H) Ef = -0.001, -0.01, 0.1, Ef = -1;
I) Ef = -10, Ef = -10; J) Ef = -1, EX = -10; K) Ef = -0.001,

-0.01, -0.1, E} = -10.

10
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times and the system approaches reaction equilibrium. A large
value of ¢ corresponds to rapid diffusion times and there is very
little reaction taking place. In both limits of very small and
very large &£, © should approach 1 if both Ef* and Er* are small.
For large &, there is very little reaction and the facilitation is
close to 1 and unaffected by changes in the kinetic rate constants.
For very small g, the system is at reaction equilibrium and the
facilitation is controlled by diffusion.

K is a dimensionless equilibrium constant. Kemena, Noble, and
Kemp (18) determined that the optimal value of K was between 1 and
10 for large variations in o and €. Over this range, the effect of

K on © was small.

When the permeate concentration at X = 1 is non-zero, the
temperature effect can have some interesting results. Figures 2a
through 2d show that © can become negative. This situation corre-
sponds to a reversal in the direction of the permeate flux. This
reversal is due to the fact that the reverse reaction is very large
at X = 0 and the forward reaction is very large at X = 1. This
effect is noted by Verhoff et al. (19) who assumed that the chemi-
cal reaction is near equilibrium to obtain an analytical solution.

The solution for © is presented graphically. This allows one
to estimate the effect of the temperature gradient on the total
facilitated flux. The isothermal facilitation factor can be esti-
mated analytically (20, 21) or determined graphically (11). At
present, there is no data available in the open literature for

comparison with the model results.
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CONCLUSIONS

The effect of a temperature gradient on the permeate flux
through a liquid film in facilitated transport has been studied.
A dimensionless number © has been defined which is the ratio of the
total facilitated flux under non-isothermal conditions to the total
facilitated flux under isothermal conditions. © provides a measure

of the temperature effect on facilitated transport.

The major effect of the temperature gradient is the change in
the reaction rate constants with temperature. It has been shown
that 6 can be increased or decreased significantly from 1 depending
on the physical properties and operating conditions of the system.
This result means that temperature effects should not be ignored,
even for small temperature differences across the liquid film.

The solution for © is presented graphically. This allows one
to estimate the effect of the temperature gradient on the facili-

tated factor.
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